Computation of magnetostatic field using second order edge elements in 3D
نویسنده
چکیده
Several second order edge elements have been applied to solving magnetostatic problems. The performances of these elements are compared through an example of magnetic circuit. In order to ensure the compatibility of the system equations and hence the convergence, the current density is represented by the curl of a source field. This avoids an explicit gauge condition which is cumbersome in the case of high order elements.
منابع مشابه
High Order Nédélec Elements with local complete sequence properties
The goal of the presented work is the efficient computation of Maxwell boundary and eigenvalue problems using high order H(curl) finite elements. We discuss a systematic strategy for the realization of arbitrary order hierarchic H(curl)conforming finite elements for triangular and tetrahedral element geometries. The shape functions are classified as lowestorder Nédélec, higher-order edge-based,...
متن کاملSignificant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind
This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...
متن کاملبررسی اثر تزویج متقابل بر مشخصات تشعشعی یک آرایه آنتن مسطح محدود شامل پچ های مستطیلی
In this paper a novel method for computing the radiation pattern and also the input impedance of a planar rectangular micro-strip antenna array with consideration of mutual coupling and mutual impedance is presented. Each two triangles with a common edge make an Edge element or RWG. Any such edge element is considered as an infinitesimal dipole. The electrical currents over each dipole can be c...
متن کاملParallelization of a 3D Magnetostatic Code Using High Performance Fortran
Numerical simulation in electrical engineering allows to reduce development costs by predicting device performance. An accurate prediction often requires 3D models, inducing high storage capacity and CPU power needs. As computation times can be very important, parallel computers are well suited for these models. 3D simulation in electrical engineering is based on recent research work (Whitney’s...
متن کاملSolving 3D Eddy Current Problems Using Second Order Nodal and Edge Elements
Several 2nd order nodal and edge elements have been applied in a potential formulation to solve 3D eddy current problems. The asymmetry of the facet related functions in the edge element basis is discussed. A new basis is proposed. Application of a gauge condition for the uniqueness of vector potential is cumbersome in the case of high order elements. This work shows that the system converges w...
متن کامل